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A solution of a variational problem of the Bolza-Meyer type based on the requirement of
sufficient conditions for the absolate minimum [1] is investigated.

Self-similarity of the class of problems under consideration is based on the fact that
some functions entering the equations are parametric and dependent in a well known manner
on the time and position of the points of discontinuity of the first kind,

Papers [2 and 3] show that the above problem is a variational one, and using the
classical definition of variation they derive the necessary conditions for the extremum of
the resulting functional.

Application of the optimality principle helps us to establish the existence of some
non-trivial curves, on which the absolute extremum of a given fanctional is reached. Thus,
for example, the absolute extremum of the functional considered on the class of control
functions representing the function of variation of the relative masa of a multi-atage
rocket, can perhaps be only achieved on the representation of a rocket with the infinite
number of stages (continuous).

The formulas obtained (5.2) represent the Tsiolkovski formula (5.4) generalised for
the case of arbitrary motion of a rocket under continuous thrust, A well known problem
allied to the present one is that belonging to the dynamics of flight, and it deals with the
programming of the thrust of the reaction engine when it is postulated that the engine
performs under the conditions of intermittent maximum thrust.

Absolute extremum of the functional is reached, in this case, on the curves realised
under the gliding conditions.

1. Let the mass of a multi-stege rocket decrease linearly [4], and let y = m/mq be the
dimensionless mass of the multi~stage rocket, where mq is the mass of the composite
rocket at the moment of start. If we consider the auxiliary plane y, ¢, then the parts of the
curve y =y (f) corresponding to the intervals of the powered flight will be represented by
the sloping straight lines, while the intervals during which the empty stage separates,
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will be represented by the vertical segments (Fig. 1).

We shall assume that the performance of the engines
of consecutive stages is not discontinuous, and we shall
denote the ration of the ‘dead weight’ of the i-th stage to
the mass of the fuel contained by it, by k;. Also, we shall
have

yti—0) =y~ yH+0)=y (i=1,..., n)
where #; is the moment of separation of the i-th stage.
FIG. 1 Analytically, the function y is defined by 25 equations of
the type

yi =y B — -1, yi =y~ (L4 k) —kyi (LD
where
t0=0, tn:Ty y()::iy yn::mp./mg
Here T is the time of working of the engines, my is the payload and f3; is the con-
sumption of fuel per second by the i-th stage.

From (1.1) it follows that the dimensionless mass of the composite rocket plays the
part of a control function of a particular type as far as the form of the control function
between its points of discontinuity of the first kind is known. Points 8 *floating’ on the
segment [,, T] influence the magnitude of the resulting functional.

Let us consider the motion of a single-stage device under the assumption that the
time of flight of this device is greater, then the time of its powered flight.

For simplicity we shall assume that only one pause is allowed during the active
period of the engine. The relative mass changes in a linear manner and the ratio of the
thrust P to the initial weight of the device is equal to

Plmyg=—Vuy.

The control function y (f) and its derivative are given, in our case, by the following

analytical equalities (Fig. 2)

p=1—B(t—1t) n=-—"5 o<ty
p=1—Bti—t) =0 H <<t 1.2)
¥ vs = ya— Ba (t — 1)y ¥s = — P2 (L,<t<T)

— Yt % This control function ¥ (£} belongs, together with its

% derivative, to the class of functions the behavior of which
¢ between the points of discontinuity of the derivative, is
known. The discontinuities of the derivative are deter-
mined from the conditions of the extremum of an arbitrary
functional.

.y’y.

‘ 2. Let the process occurring in some dynamical
7 T system be described by n ordinary differential equations
FIG. 2 of the first order

Ko

2y — fo(z, u,y, ) =0 (s=1,...,n (2.1

where x () and 4 (f) are the n- and r-dimensional vector functions respectively, the pro-
perties of which are described in [1], and ¥ (s, t;') is the I-dimensional vector function, the
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components {¥;{f.%;), - . ., ¥i{t,£;)}, of which are continuous almost everywhere on the
interval {5, T with the exception of the points t;, on which these functions possess
discontinuities of the first kind. For any fixed te=[to, T], the vector function y (¢, t)
belongs to a finite closed manifold ).

Conditions imposed on x (2), u (¢) and y (¢, ¢;) define a set ¥ (¢, 1)) of admissible
values of the aggregates of n + r + i numbers (x, Ujs t;) forevery & [t, T, and 2
region B of admissible values in the {n + 1-dimensional) space ¢, x together with the set ¥
of admissible aggregates of {n + r + i + 1) numbers Tountt;(s=1, wnnij=1, aynh

We shall now pose a problem on determining the minimum of the functional

T

J =gz z)+ \ P, 2 u gt (2.2)
to

on the space of triads of vector functions x (), u {#), ¥ (¢, t;). The set of the triads of
vector functions possessing the properties given above and satisfying (2.1), belongs to
the class D;; here and in the following, the index i means that the variational problem is
considered on the class of functions y (t, ;) which possess, on the interval [z, T] not
more than i discontinuities of the first kind.

Obviously, if we determine the points ¢;, we shall know the vector function y (1, ;).
3. The fundamental theorem of [1] has the following form.

Theorem 1, Let a sequence {z,}, 4, y,!} of vector functions be given. The sufficient
condition for this sequence to minimise the functional J on D, is, that there exists a function
¢ (¢, z), such, that

R [t! xsiv usi: ysi] "’SUPR =p’(tl li)' [mi u, y] EV(t, ti), te [t07 T]

@ [Z‘oi, w;Z] —>inf @ (z0, 1), xEB(t), neB()
T
R(t;—0)—R (t; -+ 0) + SaR/é)tidt:o
t

(3.1

If the minimum on D; exists, then the first and second condition of (3.1) have the form

Rtz utyl=p(t, ), @ (2 2) =10l O (2, 21), 2, EB (t), :€ B(T)
These conditions coincide with the conditions of the fundamental theorem (1). We
shall now prove the validity of the third condition. Let us construct the functional
T
1=® @)=\ R, 2, 4, y)at (3.2)
[
This functional coincides on the set D; with ] by virtue of the properties of the

function R. If y & Q , then the functional / is a furction of the points t;. Writing (3.2)
as

P 5

[::(D(J:g, x;)—Z S Ri (i, z, u, y) dt (3.3)
i1ty
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and equating the derivative of I with respect to t; to zero, we obtain the third condition.
We assume that the curve minimising the functional exists. Various methods of determina~
tion of the extremum depending on the method of selecting the function ¢ (£, 2}, are
possible.

We shall consider the method of solution of the stated problem, which uses Lagrange’s
formal approach.

Let the region B (1) of permissible phase coordinates be open, and x {t,) be the given
point of the phase space when ¢ = £,. Then (3.1) will have the form

Ry, (8, 2*, u*, y)=0 (s=1,..., n)
Q= {8, a*, u*, y)— (¢, 2%, u*, y) =sup, wes Q (8
T {3.4)
H(t; —0) — H (t; + 0) + SBH/&tidt—:O
t.

k3
Introducing the vector function A (1) = ¢, [, z*] the components of which are
A, (1) (s=1,...,n), we shall represent the conditions in the form

A+ OH [0z, =0, H( 2wt y)=swR(zupeeE Q) (3.5

If the dynamic system is such that its behavior depends only on y (s, ¢,), then the
equations (3.4) will define the required instants of time [3 and 4].

4. We shall now determine the number of points of discontinnity necessary for the
absolute extremum of the functional / to cceur.

Reatating the problem more accurately, we shall let the functional (2.2) be, on some
set M, bounded from below
infJ=m>— o
Let the function R (2, x, u, ¥) possess, forall t = [1, T ] and any y, a unique
supremum in the space % (#), u (f), and let it be bounded for any %, u and ¥.

The manifold (I will be bounded and closed. If the absolute extremum of the fanctional
J is not realised on the boundary of the manifold {1, then it will be realised on its closure.

Indeed, let us consider a system of expanding manifolds {D;} (i = {1, ..., o), corres«
ponding to i points of discontinuity of the first kind within the values y (t, ¢;), Let us
define, on each manifold D;, the magnitude

pit ) =supR(t z,u, 4 (2w, 4yl EV (4.1

The sequence {u‘} cannot increase, since the dimensionality of the manifold D; in~
creases on the transition from the control functions with the smaller number of disconti«
nunities of the functions possessing a larger number of them.

Since according to the previous assumption the sequence under discussion is infinite,
non-decreasing and bounded, hence it has the limit

mpw)=p@) pO=spREGzHwuY, [nwileV (4.2
We shall consider two possible modes of behavior of the sequence y (2, t;) when { - oo

Let the components of the vector function y (3, t) form, when i » >, a Cauchy sequence.
In this case there exists a unique limit function 3* = lim y (¢, t;) wheni — co.Function y*
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satisfies the initial system of equations. The absolute extremum of the function R is
reached on the triad of vector functions x* (#), y* (t) and u* (f). We shall now assume that,
when the number of points t; increases without hounds, the values of the vector function

y (¢, t;) tend to two limiting values equal to y, and y, respectively. The sequence of
supremums (4.1) of the function R being non-decreasing and hounded, tends to the unique
limit, i.e.

sup R (¢, z, u, yy) = Sup R (4, 2, 4, yg) = p (2) (4.3)

We shall call the curve x*, u*, y, = 5, in the space ¢, x the curve of zero distance of
the gliding mode. It does not satisfy the initial system of equations [5], but nevertheless
continuous functions &, (£} and &, {t) can be found such, that the given curve will satisfy
the relations

M =y f (2%, b, 1) + 0f (2%, t)
1 =a; -+ dy, o >0, ay >0, sup R (¢, z, u, y), uE Q(t 2) .49

Various methods of constructing the minimising sequence are possible, and they de~
pend on the choice of @ (¢, z) .

Using Lagrangian notation, let us write the equations giving the solution of the
stated problem assuming, that the function R has, for all t &€ [, T] and any y, anique
supremum points in the space x (¢), u (t). The sequence y; has, for i + oo the limit values
¥ {k =1, 2), and the initial system of equations assumes the following form

Ay o 0H [0z, (7, u, ¥y, 1) + @0H (2, u, yy, )02, =0 (s=1,...,n
H (tv }"1 u, yk) = sup, u e Q (t) (k= 1, 2) (4.5)
7 =ay f (2, u, Yy, 1) -+ af (2, u, ¥y, ), 1=o0y+0y 6,20, a,>0

3. We shall conaider the motion of a multi-stage rocket. Equation of motion of the
Center of Gravity of such a device can be represented by (2.1). We assume the control
function of the dimensionless mass y = m/mq to be known (see par. 1). We can easily
come to the conclusion that the given function y (¢, t;) lies, for any i, within the closed
region, the boundaries of which satisfy the equations

To=1—Bt, Ty =1 —B(k+ 1) (5.1)

The upper bound of this set corresponds to the flight of a single-stage rocket, while
the lower to the rocket in powered flight. Consequently, the extremum of the functional
can be realised on the boundaries definable by (5.1).

Equations of motion of the rocket in powered flight become in this case,
z‘. - f‘ (3, ) rm (t)? t) =0 (5~2)

or, if u () is chosen according to a predetermined program i.e. u = u (¢), then the system
of differential equations (5.2) will assume the form
J!.' - f. (z9 rm (t)' t) =0
Let us consider the Tsiolkovski problem on the vertical ascent of a composite rocket
in a homogenous gravity field. Equation of motion of the Center of Gravity of this rocket
will be

vr=—V.'y/ly—¢g (5.3)
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where v is the velocity of the Center of Gravity of the composite rocket and V' = const
is the relative exhaust velocity.

The limiting velocity V* achieved under the conditions of continuous thrust is

Ve
= Batl o 1 el (5.4
Torgw v r 14k mp v,

Hence, we have determined V* without obtaining a proper solution of (5.3). For com-
parison, we shall show solution of a similar problem using the previous method. Having
found the solution of (5.3) we shall have

Yo = (L + k) exp [— (v / n¥, + gT / V)] — ki

which, on passing to the limit when n » 0, gives

lim y, = lim (14 k) (0 —1/n)— k]"= lim {{t — (1 4 k) y/n] ™/ T+ T 00
L0 n=co

n—>co
=explI(+h],  I=(+eT)/V,
Hence
V¢ = [V, / 1+ kllnmg/my — gT
In conclusion, we shall consider the vertical ascent of a rocket under the continuous
thrust in the homogeneous medium and in the homogeneous gravity field.

Equation of motion will, in this case, be
(5.5)
v = g — e, pS¥ / 2my [1 — B (1] + BV, / (1 — B (1 + )t], D = Ygo, pSo?

Here D is the drag, ¢, is the coefficient of drag, S is the cross-section area of the
middle part of the rocket and p is the density of the mediam in which the flight takes
place. The solution of (5.4) can be represented in the form

1 e (€10 (B) =T O)1$Y 0 B) =Y, (B)
v = (o /oy 0 T OFT® }
v =2 (ma)", £ =2 (ma) ", aqa=g/B(1+k), a1 ==cpS [ 2m (1 -+ k)

Assuming that &, = 2 } ajaq, v, = 0 when & =0, we shall find
e=[Y,_ (&) — Y,y (50]/ [Vysy o) —J, 1 (E0)]
Let us now consider the motion of a hypothetical rocket possessing the following
characteristics: k = 0.1, y, =0.1, 8 =0.005 sec™", ¥, = 3000 m/sec., mo = 165.3 ¢,
T =164 sec., ¢, =1/3, 5§ =5 m? and p = 0.01 kg/sec?/m*.

In this case the upper limit I'* = 4167 m/sec.

If the model of a single-stage rocket is used, then the velocity at the moment of
burn-out ¥ = 3134 m/sec.

QOur next case is that of a horizontal flight of a winged, single-stage, reaction device,
the engine of which may, in this case, work intermittently. Then, the extremum of the
functional is achieved on the curves possessing an infinite number of points of transition
from one mode of flight, to the other. Using the equations {4.5), let us derive the equation
of the gliding curve. Equations of motion of the plane are

v =—[D(w,y)—V, yal / ¥, ¥ = Ya (5.6)
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where ¥, assumes the values (0, — 3). The function H has the form

= —MI[D (v y —V, vl + Aoty

The condition H (y, = 0) = H (y, == — B) results in
MV ly+ =0 (5.7)

Along the gliding curve, the following equations are valid

v =— [D{,y)—yV,]1/y

A —M[D—yD, +yV)/¥r=0 M —MD,/y=0

Differentiating (5.7) with respect to time and taking into account (5.6), we shall

obtain
V,D,+D—yD;=0 (5.8)

which is a well known equation defining the motion of a plane under a smooth thrast. If we
assume that the thrust can be regulated, then we shall find, that the curve (5.8) is a part
of the absolute minimal curve [1].
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